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What’s a fan?
A (smooth) fan Σ = (K , λ) consists of two components: a simplicial complex K
with m vertices, and an unimodular morphism λ : Zm → Zn.

Simplicial Complex
A simplicial complex K on a finite set JmK = {1, . . . , m} is defined as a collection
of subsets of JmK satisfying the following conditions:

1 Any singleton subset {v} ∈ K for all v ∈ JmK.
2 If σ ∈ K and τ ⊂ σ, then τ ∈ K .
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What’s a toric variety?

From our perspective: a variety XΣ with a "good covering" {Uσ}σ∈Σ.

(Pure Smooth) Toric Variety
Let dimXΣ = n and define Σ(k) as the collection of k-dimensional cones,

1 XΣ =
⋃

σ∈Σ(n) Uσ, and the isomorphisms φσ : Uσ

∼=−→ An,
2 Uσ1 ∩ Uσ2 = Uσ1∩σ2 ,
3 Let τ ∈ Σ(k) and τ ⊂ σ ∈ Σ(n) then we have induced isomorphisms for Uτ

and Yτ :
Uσ Uτ Yτ

An Ak × Gn−k
m Gn−k

m

φσ ∼=

p
∼=
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Remark
For a cone τ ⊊ σ1, σ2 that is contained in two distinct maximal cones, we can
compare the isomorphisms provided by these maximal cones. The transition
morphism

g12 = φσ1 ◦ φσ2 : Ak × Gn−k
m → Ak × Gn−k

m

is determined by λ. These transition morphisms are crucial to understand the
structure of toric varieties, and can not be detected by motivic cohomology or
Chow groups.

To introduce the concept of cellular A1-homology, let us initially examine the
(topological) cellular structure of the real points XΣ(R).
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Cellular Complex of Real Points

The real points XΣ(R) of toric varieties are actually "cubical":

Uσ1

Yσ1

· · ·

Uσ2

Yσ2

Uσ3

Yσ3

Uσ1∩σ2

Yσ1∩σ2

Uσ2∩σ3

Yσ2∩σ3

Uσ1∩σ2∩σ3 = Yσ1∩σ2∩σ3

· · ·
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It is also helpful to think about the (Poincare) dual pictures:

· · ·

· · ·
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Cellular A1-Homology

A1-cellular structure
Toric variety XΣ admit a A1-cellular structure, defined by a filtration:

Gn
m

∼= Ω0 ⊂ · · · ⊂ Ωn = XΣ

where Ωi =
⋃

σ∈Σ(i) Uσ. This filtration satisfies

Ωi \ Ωi−1 =
⊔

σ∈Σ(i)

Yσ
∼=

⊔
σ∈Σ(i)

Gn−i
m ,

which are cohomological trivial.

Then we can choose the orientations for the Thom spaces to obtain the following
identification:

ι : Ωi/Ωi−1 =
⊔

σ∈Σ(i)

Th(NUσ/Yσ
)

∼=−→
⊔

σ∈Σ(i)

Gn−i
m × (Ai/Ai \ {0})
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On other hand, we define the boundary morphism by composing

∂i : Ωi/Ωi−1 → ΣΩi−1 → ΣΩi−1/Ωi−2

which induces the boundary morphism in AbA1(k) through A1-homology:

∂i : HA1

i (Ωi/Ωi−1) → HA1

i−1(Ωi−1/Ωi−2)

By applying the selected orientations, we can have the following identification:

ι : HA1

i (Ωi/Ωi−1)
∼=−→

⊕
σ∈Σ(i)

HA1

i (Gn−i
m × (Ai/Ai \ {0}))

Furthermore, we have HA1

i (Gn−i
m × (Ai/Ai \ {0})) = H⊗n−i ⊗ KMW

i , where
H := ZA1 [Gm] ∼= Z ⊕ KMW

1 (analogous to Z[Z/2] ∼= Z ⊕ Z).
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Thus, we can define the oriented boundary morphism as

∂̃i :
⊕

σ∈Σ(i)

H⊗n−i ⊗ KMW
i →

⊕
σ∈Σ(i−1)

H⊗n−i+1 ⊗ KMW
i−1

(Oriented) Cellular A1-Chain Complex and Cellular A1-Homology
We define the (oriented) cellular A1-chain complex C cell

∗ (XΣ) ∈ D(AbA1(k)) as:

C cell
∗ (XΣ) :=

 ⊕
σ∈Σ(i)

H⊗n−i ⊗ KMW
i , ∂̃i


i

whose homology groups are the cellular A1-homology Hcell
∗ (XΣ) ∈ AbA1(k).

KMW
n

· · ·

KMW
n

KMW
n

H ⊗ KMW
n−1

H ⊗ KMW
n−1 H⊗2 ⊗ KMW

n−2
· · ·
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What can we do with cellular A1-homology?

Proposition [Prop 2.27, Morel-Sawant 23]
For any strictly A1-invariant sheaf M ∈ AbA1(k), we have the isomorphisms

Hn
Nis(XΣ, M)

∼=−→ HomD(AbA1 (k))(C cell
∗ (XΣ), M[n])

We can use cellular A1-chain complex to compute MW-motive M̃(XΣ) ∈ D̃M(k),
more precisely

M̃(XΣ)+ :=

 ⊕
σ∈Σ(i)

M̃(Gm)⊗n−i
+ ⊗ Z̃(i)[i ], ∂̃i


i

Question
How do we determine the boundary morphism ∂̃i ?
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Cubical Cells
In order to make the explicit computation, we need to define a "basis" for
ZA1(GI

m) ∼= H⊗I , which has 2I summands.

Cubical Cell
Given a partition of τ 1

e ⊔ τ⊙
e = JIK, we define the cubical cell as

e =
∏
i∈τ 1

e

{xi = 1}
∏

i∈τ⊙
e

{xi ̸= 0} ⊂ GI
m

Let te = |τ⊙
e |, this induces a morphism

[e] : KMW
te

↪→ ZA1(GI
m)

Furthermore, it is easy to see that

ZA1(GI
m) ∼=

⊕
e⊂GI

m cubical

[e]KMW
te

Similarly, we can define the oriented cubical cells [e, θ] : KMW
te+i ↪→ C cell

i (XΣ) and
form a basis.
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Example: Cubical Cellular Structure of An

Example
An can be regarded as a toric variety with the fan (2JnK, Id).

C cell
∗ (An) :=

 ⊕
σ⊂JnK, |σ|=i

ZA1 [Yσ] ⊗ KMW
i , ∂i


i

where Yσ =
∏

i /∈σ{xi ̸= 0}
∏

i∈σ{xi = 0} ∼= G|σ|
m .

Cubical Cells of An

Given a partition of τ 1
e ⊔ τ⊙

e ⊔ σe = JnK, we define the cubical cell as

e =
∏
i∈τ 1

e

{xi = 1}
∏

i∈τ⊙
e

{xi ̸= 0}
∏
i∈σe

{xi = 0} ⊂ Yσe ⊂ An

This provides a basis C cell
i (An) =

⊕
σe⊂JnK, |σe |=i [e]KMW

te+i , where
∂[e] =

∑
j∈σe

±ϵ?[∂je] (∂je signifies moving j ∈ σe to τ⊙
e ).
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σe = {1, 2}

|σe | = 1
σe = ∅

τ⊙
e = {1}

τ⊙
e = {2}

τ⊙
e = ∅

τ⊙
e = ∅

τ⊙
e = {1}

τ⊙
e = {2}

τ⊙
e = {1, 2}

The intuition is that σe determines the dual dimension of the cell [e], while τ⊙
e

indicates the number of connected components it contains (i.e., 2te ).
It is worth noting that, although C cell

∗ (An) ∼= Z, this cellular structure serves as
the fundamental block (cube) for toric varieties.
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Moment-Angle Complexes and Toric Quotient
The boundary morphisms can become quite complex in higher dimensions,
instead, we can use the fact that XΣ is a toric quotient.

Example
Consider the projective space:

An \ {0} An

Pn−1 ∼= An \ {0}/Gm

Gm

In general, for the simplicial complex K over JmK, we can define the
moment-angle complex AZK ⊂ Am as:

Moment-Angle Complex

AZK :=
⋃

σ∈K
{(x1, . . . , xm) ∈ Am | xi ̸= 0 if i /∈ σ}
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The upshot is that C cell
i (AZK ) =

⊕
σe∈K , |σe |=i [e]KMW

te+i , and C cell
∗ (AZK ) is a

subcomplex of C cell
∗ (Am), making the boundary morphism straightforward.

Now for a smooth fan Σ = (K , λ : Zm ↠ Zn), consider the morphism
exp λ : Gm

m ↠ Gn
m induced by λ, and let G := Ker(exp λ) ⊂ Gm

m be its kernel.

Homogeneous Coordinate
G acts freely on AZK , and we have

AZK Am

XΣ ∼= AZK /G

G

p

This induced a morphism of complexes

p∗ : C cell
∗ (AZK ) → C cell

∗ (XΣ)
[e] 7→ [p(e)]

such that for any group section g : Gte
m → G , p∗[e] = p∗g∗[e].
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Toric Action on Cubical Cells

The toric group Gn
m naturally acts on the affine space An. To understand its

action on a cubical cell e : Gte
m → An, consider a group section g : Gte

m → Gn
m.

The image g∗[e] corresponds to the cell g · e : Gte
m → An, which may not be a

cubical cell.

To represent g∗[e] in terms of cubical cells, notice that g can be represented by a
te × n matrix over Z as {rij}, and defining r ′

ij = rij + δij . Additionally, let χ(i) = 0
for even i and 1 for odd i .

Proposition
Let ω0 ⊂ τe = τ 1

e ⊔ τ⊙
e be the subset such that j ∈ ω0 if ∀i ∈ τ⊙

e , r ′
ij = 0. If

te > |τe | − |ω0|, then:

g∗[e] =
∑

ω⊂τe\ω0

ηte−|ω|
∑
π⊂ω

(−1)|ω|−|π|
∏

i∈τ⊙
e

χ

( ∑
j∈π⊔σe

r ′
ij

)
[eω]

Here we have the morphism η : KMW
i → KMW

i−1 which is analogous of multiplying
by 2. And [eω] represents the cubical cell where τ⊙ = ω.
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Canonical Cells
To further simplify the computation, we introduce a complex C can

∗ (AZK )
consisting of canonical cells.

Canonical Cells
There exists a subgroup C can

i (AZK ) ⊂ C cell
i (AZK ) such that it defines a section

of p∗ at each degree
C can

i (AZK ) C cell
i (AZK )

C cell
i (XΣ)

⊂
p∗∼=

And for any cubical [e] ∈ C cell
i (AZK ), there exists a unique group section

Te : Gte
m → G , such that T∗[e] := Te∗[e] ∈ C can

i (AZK ).
The compatible boundary morphism can then be defined as:

∂can[e] =
∑
j∈σe

±ϵ?T∗([∂je]).

And p∗ induces an isomorphism of complexes p∗ : C can
∗ (AZK )

∼=−→ C cell
∗ (XΣ).
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Shellable Simplicial Complex

We can further simplify C can
∗ (AZK ) by considering the restriction complex

C can
∗ (AZK ) ⊂ C can

∗ (AZK ), which acts as a retraction, leading to an isomorphism
C can

∗ (AZK ) ∼= C can
∗ (AZK ).

Let’s consider the sheallable cases. A simplicial complex K is shellable if it admits
a shelling, i.e. an ordering {σ2, . . . , σs} = K (n) of its facets such that they have
nice intersections.

The shellable simplicial complex have the important
property that for σi ∈ K (n), here exists a unique subset r(σi) ⊂ σi that is minimal
among all subsets τ ⊆ σi , where τ ⊈ σj for all j < i .
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For a shellable fan Σ = (K , λ), we have the restriction complex C can
∗ (AZK ) where

on each degree it only depends on K :

C can
i (AZK ) =

⊕
σ∈K(n), |r(σ)|=i

[er(σ)
∅ ]KMW

i

and [er(σ)
∅ ] means σe = r(σ) and τ⊙

e = ∅.

While boundary morphism ∂
can also relies on λ.

Proposition

∂
can[er(σ)

∅ ] =
∑

j∈r(σ)

±wjη[er(σ)\j
∅ ]

where wj = 0 or 1 depends on the fan Σ = (K , λ).

We can in fact explicitly calculus the homology using some combinatorial ways.
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Low Dimensional Cases
Given that K is the boundary complex of a simple n-polytope (e.g., when XΣ is
projective), we can show that for dimension n ≤ 4, the torsion part of Hcell

i (XΣ)
consist only of η-torsion elements.
Recall that KMW

i /η ∼= KM
i and ηKMW

i
∼= 2KM

i . Let bi = rk(Gλ
i,free) be some Betti

numbers can be computed from the fan Σ, and X n
Σ denotes the toric variety of

dimension n.

Speifically, we have the following results for various dimensions:

Hcell
i (X 2

Σ) Orientable Non-orientable
i = 0 Z Z
i = 1 (KMW

1 )m−2 (KMW
1 )m−3 ⊕ KM

2
i = 2 KMW

2 2KM
2

Hcell
i (X 3

Σ) Orientable Non-orientable
i = 0 Z Z
i = 1 (KMW

1 )b0 ⊕ (KM
1 )m−3−b0 (KMW

1 )b0 ⊕ (KM
1 )m−3−b0

i = 2 (KMW
2 )b0 ⊕ (2KM

2 )m−3−b0 (KMW
2 )b0−1 ⊕ KM

2 ⊕ (2KM
2 )m−3−b0

i = 3 KMW
3 2KM

3
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Hcell
i (X 4

Σ) Orientable
i = 0 Z
i = 1 (KMW

1 )b0 ⊕ (KM
1 )m−4−b0

i = 2 (KMW
2 )b1 ⊕ (KM

2 )m−4−b0 ⊕ (2KM
2 )m−4−b0

i = 3 (KMW
3 )b0 ⊕ (2KM

3 )m−4−b0

i = 4 KMW
4

Hcell
i (X 4

Σ) Non-orientable
i = 0 Z
i = 1 (KMW

1 )b0 ⊕ (KM
1 )m−4−b0

i = 2 (KMW
2 )b1 ⊕ (KM

2 )m−5−b2 ⊕ (2KM
2 )m−4−b0

i = 3 (KMW
3 )b2 ⊕ KM

3 ⊕ (2KM
3 )m−5−b2

i = 4 2KM
4

We can observe the Poincare duality for complex point XΣ(C) by replacing KMW

and KM with Z[1], and for real points XΣ(R) by removing KM and replacing
KMW with Z.
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Motivic Decomposition

Corollary
In the category D̃M(k), for a smooth pure shellable toric variety XΣ, we have the
following MW-motivic decomposition:

M̃(XΣ) ∼=
⊕
l∈N

⊕
σ∈B(l)

Z̃ � lη(|r(σ)|)[2|r(σ)|],

where B(l) ⊂ K (n) are subsets that can be derived from the fan Σ = (K , λ).

If we pass to the derived motivic category DM(k), in which η = 0, then we obtain
this trivial corollary (as an analogue of Z/2 coefficient):

Corollary
In the category DM(k), for a smooth pure shellable toric variety XΣ, we obtain
the following motivic decomposition:

M(XΣ) ∼=
⊕

σ∈K(n)

Z(|r(σ)|)[2|r(σ)|]
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More General Cases

Our results do not hold exactly when the pure or shellable conditions are removed.
The problem arises from the non-algebro-geometric components (i.e., the
summands Z(q)[p] with 2q > p) it has. However, these components vanish when
considering only the Chow group, providing an additive basis for the Chow group.

Proposition
For a smooth toric variety XΣ, consider an order on K (n) = {σ1, . . . , σg}. Define
the sets

min(σi) = {τ ⊂ σi | τ is minimal for τ ̸⊂ σj for all j < i}.

We then have the following decomposition of the Chow group:

CH∗(XΣ) ∼=
⊕

σ∈Kmax

⊕
τ∈min(σ)

Z[eτ ]

The generators are given by [eτ ] ∈ CH|τ |(XΣ).
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Thank you
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Questions
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What is B(l)?

Given a mod-2 linear function κ : Zn → Zn
2 → Z2, we define the row set ωκ ⊂ JmK

as the subset {j ∈ JmK | κλ(vj) ≡ 1 mod 2}, where vj are the basis vectors of
Zm. Let rowλ ⊂ 2JmK denote the set of all row sets; thus, we can observe that
|rowλ| = 2n.
For λ : Zm → Zn, let Kω represent a specific subcomplex of K formed by
intersecting with ω ∈ rowλ. We define Gλ

i =
⊕

ω∈rowλ H̃i(|Kω|) as the direct sum
of the reduced homology groups. The basis B(0) ⊂ Kmax forms the free part of
Gλ

∗,free , while for l > 1, the basis B(l) ⊂ Kmax corresponds to the l-torsion part
Gλ

∗,l−tor .
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