Cellular A¹-Homology of Smooth Toric Varieties

(arXiv 2505.04520)

Keyao Peng

CNRS, Université Bourgogne Europe

What's a fan?

A (smooth) fan $\Sigma = (K, \lambda)$ consists of two components: a simplicial complex K with m vertices, and an unimodular morphism $\lambda : \mathbb{Z}^m \to \mathbb{Z}^n$.

What's a fan?

A (smooth) fan $\Sigma = (K, \lambda)$ consists of two components: a simplicial complex K with m vertices, and an unimodular morphism $\lambda : \mathbb{Z}^m \to \mathbb{Z}^n$.

Simplicial Complex

A simplicial complex K on a finite set $\llbracket m \rrbracket = \{1, \dots, m\}$ is defined as a collection of subsets of $\llbracket m \rrbracket$ satisfying the following conditions:

- Any singleton subset $\{v\} \in K$ for all $v \in [m]$.

What's a fan?

A (smooth) fan $\Sigma = (K, \lambda)$ consists of two components: a simplicial complex K with m vertices, and an unimodular morphism $\lambda : \mathbb{Z}^m \to \mathbb{Z}^n$.

Simplicial Complex

A simplicial complex K on a finite set $[\![m]\!] = \{1, \dots, m\}$ is defined as a collection of subsets of $[\![m]\!]$ satisfying the following conditions:

- Any singleton subset $\{v\} \in K$ for all $v \in [m]$.
- ② If $\sigma \in K$ and $\tau \subset \sigma$, then $\tau \in K$.

From our perspective: a variety X_{Σ} with a "good covering" $\{U_{\sigma}\}_{\sigma \in \Sigma}$.

From our perspective: a variety X_{Σ} with a "good covering" $\{U_{\sigma}\}_{\sigma \in \Sigma}$.

(Pure Smooth) Toric Variety

Let $\dim X_{\Sigma} = n$ and define $\Sigma(k)$ as the collection of k-dimensional cones,

From our perspective: a variety X_{Σ} with a "good covering" $\{U_{\sigma}\}_{{\sigma}\in\Sigma}$.

(Pure Smooth) Toric Variety

Let $\dim X_{\Sigma} = n$ and define $\Sigma(k)$ as the collection of k-dimensional cones,

- $U_{\sigma_1} \cap U_{\sigma_2} = U_{\sigma_1 \cap \sigma_2},$

From our perspective: a variety X_{Σ} with a "good covering" $\{U_{\sigma}\}_{{\sigma}\in\Sigma}$.

(Pure Smooth) Toric Variety

Let $\dim X_{\Sigma} = n$ and define $\Sigma(k)$ as the collection of k-dimensional cones,

- $U_{\sigma_1} \cap U_{\sigma_2} = U_{\sigma_1 \cap \sigma_2},$
- **③** Let $\tau \in \Sigma(k)$ and $\tau \subset \sigma \in \Sigma(n)$ then we have induced isomorphisms for U_{τ} and Y_{τ} :

Remark

For a cone $\tau \subsetneq \sigma_1, \sigma_2$ that is contained in two distinct maximal cones, we can compare the isomorphisms provided by these maximal cones. The transition morphism

$$g_{12} = \varphi_{\sigma_1} \circ \varphi_{\sigma_2} : \mathbb{A}^k \times \mathbb{G}_m^{n-k} \to \mathbb{A}^k \times \mathbb{G}_m^{n-k}$$

is determined by λ . These transition morphisms are crucial to understand the structure of toric varieties, and can **not** be detected by motivic cohomology or Chow groups.

Remark

For a cone $\tau \subsetneq \sigma_1, \sigma_2$ that is contained in two distinct maximal cones, we can compare the isomorphisms provided by these maximal cones. The transition morphism

$$g_{12} = \varphi_{\sigma_1} \circ \varphi_{\sigma_2} : \mathbb{A}^k \times \mathbb{G}_m^{n-k} \to \mathbb{A}^k \times \mathbb{G}_m^{n-k}$$

is determined by λ . These transition morphisms are crucial to understand the structure of toric varieties, and can **not** be detected by motivic cohomology or Chow groups.

To introduce the concept of cellular \mathbb{A}^1 -homology, let us initially examine the (topological) cellular structure of the real points $X_{\Sigma}(\mathbb{R})$.

Cellular Complex of Real Points

The real points $X_{\Sigma}(\mathbb{R})$ of toric varieties are actually "cubical":

It is also helpful to think about the (Poincare) dual pictures:

Cellular A¹-Homology

\mathbb{A}^1 -cellular structure

Toric variety X_{Σ} admit a \mathbb{A}^1 -cellular structure, defined by a filtration:

$$\mathbb{G}_m^n \cong \Omega_0 \subset \cdots \subset \Omega_n = X_{\Sigma}$$

where $\Omega_i = \bigcup_{\sigma \in \Sigma(i)} U_{\sigma}$. This filtration satisfies

$$\Omega_i \setminus \Omega_{i-1} = \bigsqcup_{\sigma \in \Sigma(i)} Y_{\sigma} \cong \bigsqcup_{\sigma \in \Sigma(i)} \mathbb{G}_m^{n-i},$$

which are cohomological trivial.

Cellular A¹-Homology

A¹-cellular structure

Toric variety X_{Σ} admit a \mathbb{A}^1 -cellular structure, defined by a filtration:

$$\mathbb{G}_m^n \cong \Omega_0 \subset \cdots \subset \Omega_n = X_{\Sigma}$$

where $\Omega_i = \bigcup_{\sigma \in \Sigma(i)} U_{\sigma}$. This filtration satisfies

$$\Omega_i \setminus \Omega_{i-1} = \bigsqcup_{\sigma \in \Sigma(i)} Y_{\sigma} \cong \bigsqcup_{\sigma \in \Sigma(i)} \mathbb{G}_m^{n-i},$$

which are cohomological trivial.

Then we can choose the orientations for the Thom spaces to obtain the following identification:

$$\iota:\Omega_i/\Omega_{i-1}=\bigsqcup_{\sigma\in\Sigma(i)}\operatorname{Th}(N_{U_\sigma/Y_\sigma})\xrightarrow{\cong}\bigsqcup_{\sigma\in\Sigma(i)}\mathbb{G}_m^{n-i}\times\left(\mathbb{A}^i/\mathbb{A}^i\setminus\{0\}\right)$$

$$\partial_i:\Omega_i/\Omega_{i-1} \to \Sigma\Omega_{i-1} \to \Sigma\Omega_{i-1}/\Omega_{i-2}$$

$$\partial_i: \Omega_i/\Omega_{i-1} \to \Sigma\Omega_{i-1} \to \Sigma\Omega_{i-1}/\Omega_{i-2}$$

which induces the boundary morphism in $Ab_{\mathbb{A}^1}(k)$ through \mathbb{A}^1 -homology:

$$\partial_i: \mathbf{H}_i^{\mathbb{A}^1}(\Omega_i/\Omega_{i-1}) o \mathbf{H}_{i-1}^{\mathbb{A}^1}(\Omega_{i-1}/\Omega_{i-2})$$

$$\partial_i: \Omega_i/\Omega_{i-1} \to \Sigma\Omega_{i-1} \to \Sigma\Omega_{i-1}/\Omega_{i-2}$$

which induces the boundary morphism in $Ab_{\mathbb{A}^1}(k)$ through \mathbb{A}^1 -homology:

$$\partial_i: \mathbf{H}_i^{\mathbb{A}^1}(\Omega_i/\Omega_{i-1}) o \mathbf{H}_{i-1}^{\mathbb{A}^1}(\Omega_{i-1}/\Omega_{i-2})$$

By applying the selected orientations, we can have the following identification:

$$\iota: \mathbf{H}_{i}^{\mathbb{A}^{1}}(\Omega_{i}/\Omega_{i-1}) \xrightarrow{\cong} \bigoplus_{\sigma \in \Sigma(i)} \mathbf{H}_{i}^{\mathbb{A}^{1}}(\mathbb{G}_{m}^{n-i} \times (\mathbb{A}^{i}/\mathbb{A}^{i} \setminus \{0\}))$$

$$\partial_i: \Omega_i/\Omega_{i-1} \to \Sigma\Omega_{i-1} \to \Sigma\Omega_{i-1}/\Omega_{i-2}$$

which induces the boundary morphism in $Ab_{\mathbb{A}^1}(k)$ through \mathbb{A}^1 -homology:

$$\partial_i: \mathbf{H}_i^{\mathbb{A}^1}(\Omega_i/\Omega_{i-1}) o \mathbf{H}_{i-1}^{\mathbb{A}^1}(\Omega_{i-1}/\Omega_{i-2})$$

By applying the selected orientations, we can have the following identification:

$$\iota: \mathbf{H}_{i}^{\mathbb{A}^{1}}(\Omega_{i}/\Omega_{i-1}) \xrightarrow{\cong} \bigoplus_{\sigma \in \Sigma(i)} \mathbf{H}_{i}^{\mathbb{A}^{1}}(\mathbb{G}_{m}^{n-i} \times (\mathbb{A}^{i}/\mathbb{A}^{i} \setminus \{0\}))$$

Furthermore, we have $\mathbf{H}_{i}^{\mathbb{A}^{1}}(\mathbb{G}_{m}^{n-i}\times(\mathbb{A}^{i}/\mathbb{A}^{i}\setminus\{0\}))=\mathbf{H}^{\otimes n-i}\otimes\mathrm{K}_{i}^{\mathrm{MW}}$, where $\mathbf{H}:=\mathbf{Z}_{\mathbb{A}^{1}}[\mathbb{G}_{m}]\cong\mathbb{Z}\oplus\mathrm{K}_{1}^{\mathrm{MW}}$ (analogous to $\mathbb{Z}[\mathbb{Z}/2]\cong\mathbb{Z}\oplus\mathbb{Z}$).

Thus, we can define the oriented boundary morphism as

$$\widetilde{\partial}_i: \bigoplus_{\sigma \in \Sigma(i)} \mathbf{H}^{\otimes n-i} \otimes \mathrm{K}_i^{\mathrm{MW}} \to \bigoplus_{\sigma \in \Sigma(i-1)} \mathbf{H}^{\otimes n-i+1} \otimes \mathrm{K}_{i-1}^{\mathrm{MW}}$$

Thus, we can define the oriented boundary morphism as

$$\widetilde{\partial_i}: \bigoplus_{\sigma \in \Sigma(i)} \textbf{H}^{\otimes n-i} \otimes \mathrm{K}_i^{\mathrm{MW}} \to \bigoplus_{\sigma \in \Sigma(i-1)} \textbf{H}^{\otimes n-i+1} \otimes \mathrm{K}_{i-1}^{\mathrm{MW}}$$

(Oriented) Cellular \mathbb{A}^1 -Chain Complex and Cellular \mathbb{A}^1 -Homology

We define the (oriented) cellular \mathbb{A}^1 -chain complex $C^{cell}_*(X_\Sigma) \in D(Ab_{\mathbb{A}^1}(k))$ as:

$$C^{cell}_*(X_{\Sigma}) := \left(\bigoplus_{\sigma \in \Sigma(i)} \mathbf{H}^{\otimes n-i} \otimes \mathrm{K}^{\mathrm{MW}}_i, \widetilde{\partial}_i \right)$$

whose homology groups are the cellular \mathbb{A}^1 -homology $\mathbf{H}^{cell}_*(X_{\Sigma}) \in Ab_{\mathbb{A}^1}(k)$.

Thus, we can define the oriented boundary morphism as

$$\widetilde{\partial}_i: \bigoplus_{\sigma \in \Sigma(i)} \textbf{H}^{\otimes n-i} \otimes \mathrm{K}_i^{\mathrm{MW}} \to \bigoplus_{\sigma \in \Sigma(i-1)} \textbf{H}^{\otimes n-i+1} \otimes \mathrm{K}_{i-1}^{\mathrm{MW}}$$

(Oriented) Cellular \mathbb{A}^1 -Chain Complex and Cellular \mathbb{A}^1 -Homology

We define the (oriented) cellular \mathbb{A}^1 -chain complex $C^{cell}_*(X_\Sigma) \in D(Ab_{\mathbb{A}^1}(k))$ as:

$$C^{cell}_*(X_{\Sigma}) := \left(igoplus_{\sigma \in \Sigma(i)} \mathbf{H}^{\otimes n-i} \otimes \mathrm{K}^{\mathrm{MW}}_i, \widetilde{\partial}_i
ight)$$

whose homology groups are the cellular \mathbb{A}^1 -homology $\mathbf{H}^{cell}_*(X_\Sigma) \in Ab_{\mathbb{A}^1}(k)$.

What can we do with cellular \mathbb{A}^1 -homology?

Proposition [Prop 2.27, Morel-Sawant 23]

For any strictly \mathbb{A}^1 -invariant sheaf $\mathbf{M} \in Ab_{\mathbb{A}^1}(k)$, we have the isomorphisms

$$H^n_{\mathrm{Nis}}(X_{\Sigma}, \mathbf{M}) \xrightarrow{\cong} \mathrm{Hom}_{D(Ab_{\mathbb{A}^1}(k))} \big(C^{cell}_*(X_{\Sigma}), \mathbf{M}[n] \big)$$

What can we do with cellular \mathbb{A}^1 -homology?

Proposition [Prop 2.27, Morel-Sawant 23]

For any strictly \mathbb{A}^1 -invariant sheaf $\mathbf{M} \in Ab_{\mathbb{A}^1}(k)$, we have the isomorphisms

$$H^n_{\mathrm{Nis}}(X_{\Sigma}, \mathbf{M}) \xrightarrow{\cong} \mathrm{Hom}_{D(Ab_{\mathbb{A}^1}(k))}(C^{cell}_*(X_{\Sigma}), \mathbf{M}[n])$$

We can use cellular \mathbb{A}^1 -chain complex to compute MW-motive $\widetilde{\mathrm{M}}(X_\Sigma) \in \widetilde{\mathrm{DM}}(k)$, more precisely

$$\widetilde{\mathrm{M}}(X_{\Sigma})_{+} := \left(\bigoplus_{\sigma \in \Sigma(i)} \widetilde{\mathrm{M}}(\mathbb{G}_{m})_{+}^{\otimes n-i} \otimes \widetilde{\mathbb{Z}}(i)[i], \widetilde{\partial}_{i} \right)_{+}$$

What can we do with cellular \mathbb{A}^1 -homology?

Proposition [Prop 2.27, Morel-Sawant 23]

For any strictly \mathbb{A}^1 -invariant sheaf $\mathbf{M} \in Ab_{\mathbb{A}^1}(k)$, we have the isomorphisms

$$H^n_{\mathrm{Nis}}(X_{\Sigma}, \mathbf{M}) \xrightarrow{\cong} \mathrm{Hom}_{D(Ab_{\mathbb{A}^1}(k))}(C^{cell}_*(X_{\Sigma}), \mathbf{M}[n])$$

We can use cellular \mathbb{A}^1 -chain complex to compute MW-motive $\widetilde{\mathrm{M}}(X_\Sigma) \in \widetilde{\mathrm{DM}}(k)$, more precisely

$$\widetilde{\mathrm{M}}(X_{\Sigma})_{+} := \left(\bigoplus_{\sigma \in \Sigma(i)} \widetilde{\mathrm{M}}(\mathbb{G}_{m})_{+}^{\otimes n-i} \otimes \widetilde{\mathbb{Z}}(i)[i], \widetilde{\partial}_{i} \right)_{i}$$

Question

How do we determine the boundary morphism $\widetilde{\partial}_i$?

Cubical Cells

In order to make the explicit computation, we need to define a "basis" for $\mathbf{Z}_{\mathbb{A}^1}(\mathbb{G}_m^I)\cong \mathbf{H}^{\otimes I}$, which has 2^I summands.

Cubical Cells

In order to make the explicit computation, we need to define a "basis" for $\mathbf{Z}_{\mathbb{A}^1}(\mathbb{G}_m^I)\cong \mathbf{H}^{\otimes I}$, which has 2^I summands.

Cubical Cell

Given a partition of $au_e^1 \sqcup au_e^\odot = \llbracket I \rrbracket$, we define the cubical cell as

$$e = \prod_{i \in \tau_e^1} \{x_i = 1\} \prod_{i \in \tau_e^{\circ}} \{x_i \neq 0\} \subset \mathbb{G}_m^I$$

Let $t_e = |\tau_e^{\odot}|$, this induces a morphism

$$[e]: \mathrm{K}^{\mathrm{MW}}_{t_e} \hookrightarrow \mathbf{Z}_{\mathbb{A}^1}(\mathbb{G}'_m)$$

Cubical Cells

In order to make the explicit computation, we need to define a "basis" for $\mathbf{Z}_{\mathbb{A}^1}(\mathbb{G}_m^I) \cong \mathbf{H}^{\otimes I}$, which has 2^I summands.

Cubical Cell

Given a partition of $\tau_a^1 \sqcup \tau_a^{\odot} = [I]$, we define the cubical cell as

$$e = \prod_{i \in \tau_e^1} \{x_i = 1\} \prod_{i \in \tau_e^{\circ}} \{x_i \neq 0\} \subset \mathbb{G}_m^I$$

Let $t_e = |\tau_e^{\odot}|$, this induces a morphism

$$[e]: \mathrm{K}^{\mathrm{MW}}_{t_e} \hookrightarrow \mathbf{Z}_{\mathbb{A}^1}(\mathbb{G}'_m)$$

Furthermore, it is easy to see that

$$\mathsf{Z}_{\mathbb{A}^1}(\mathbb{G}_m^I)\congigoplus_{e\subset\mathbb{G}_m^I ext{ cubical}}[e]\mathrm{K}_{t_e}^{\mathrm{MW}}$$

Similarly, we can define the oriented cubical cells $[e, \theta]: \mathrm{K}^{\mathrm{MW}}_{t_{\circ}+i} \hookrightarrow \mathcal{C}^{\mathrm{cell}}_{i}(X_{\Sigma})$ and form a basis. 4□ > 4ⓓ > 4≧ > 4≧ > ½ 900

Example: Cubical Cellular Structure of \mathbb{A}^n

Example

 \mathbb{A}^n can be regarded as a toric variety with the fan $(2^{[n]}, \mathrm{Id})$.

$$C^{cell}_*(\mathbb{A}^n) := \left(igoplus_{\sigma \subset \llbracket n
rbracket} \mathbf{Z}_{\mathbb{A}^1}[Y_\sigma] \otimes \mathrm{K}^{\mathrm{MW}}_i, \partial_i
ight)$$

where $Y_{\sigma} = \prod_{i \notin \sigma} \{x_i \neq 0\} \prod_{i \in \sigma} \{x_i = 0\} \cong \mathbb{G}_m^{|\sigma|}$.

Example: Cubical Cellular Structure of \mathbb{A}^n

Example

 \mathbb{A}^n can be regarded as a toric variety with the fan $(2^{[n]}, \mathrm{Id})$.

$$\mathcal{C}^{cell}_*(\mathbb{A}^n) := \left(igoplus_{\sigma \subset \llbracket n
rbracket} \mathbf{Z}_{\mathbb{A}^1}[Y_\sigma] \otimes \mathrm{K}^{\mathrm{MW}}_i, \partial_i
ight)_{i=1}^n$$

where $Y_{\sigma} = \prod_{i \notin \sigma} \{x_i \neq 0\} \prod_{i \in \sigma} \{x_i = 0\} \cong \mathbb{G}_m^{|\sigma|}$.

Cubical Cells of \mathbb{A}^n

Given a partition of $\tau_e^1 \sqcup \tau_e^{\odot} \sqcup \sigma_e = [n]$, we define the cubical cell as

$$e = \prod_{i \in \tau_e^1} \{x_i = 1\} \prod_{i \in \tau_e^{\odot}} \{x_i \neq 0\} \prod_{i \in \sigma_e} \{x_i = 0\} \subset Y_{\sigma_e} \subset \mathbb{A}^n$$

This provides a basis $C_i^{cell}(\mathbb{A}^n) = \bigoplus_{\sigma_e \subset \llbracket n \rrbracket, \mid \sigma_e \mid = i} [e] \mathrm{K}^{\mathrm{MW}}_{t_e + i}$, where $\partial[e] = \sum_{i \in \sigma_e} \pm \epsilon^{?}[\partial_i e] \ (\partial_i e \text{ signifies moving } j \in \sigma_e \text{ to } \tau_e^{\odot}).$

The intuition is that σ_e determines the dual dimension of the cell [e], while τ_e^{\odot} indicates the number of connected components it contains (i.e., 2^{t_e}). It is worth noting that, although $C_*^{cell}(\mathbb{A}^n) \cong \mathbb{Z}$, this cellular structure serves as the fundamental block (cube) for toric varieties.

Moment-Angle Complexes and Toric Quotient

The boundary morphisms can become quite complex in higher dimensions, instead, we can use the fact that X_{Σ} is a toric quotient.

Example

Consider the projective space:

$$\mathbb{G}_{m} (\bigwedge^{A} \setminus \{0\}) \longrightarrow \mathbb{A}^{n}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{P}^{n-1} \cong \mathbb{A}^{n} \setminus \{0\}/\mathbb{G}_{m}$$

Moment-Angle Complexes and Toric Quotient

The boundary morphisms can become quite complex in higher dimensions, instead, we can use the fact that X_{Σ} is a toric quotient.

Example

Consider the projective space:

$$\mathbb{G}_{m} (A^{n} \setminus \{0\}) \longrightarrow A^{n}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{P}^{n-1} \cong A^{n} \setminus \{0\}/\mathbb{G}_{m}$$

In general, for the simplicial complex K over $[\![m]\!]$, we can define the moment-angle complex $\mathbb{A}\mathcal{Z}_K\subset\mathbb{A}^m$ as:

Moment-Angle Complex

$$\mathbb{A}\mathcal{Z}_{K} := \bigcup_{\sigma \in K} \{(x_{1}, \dots, x_{m}) \in \mathbb{A}^{m} \mid x_{i} \neq 0 \text{ if } i \notin \sigma\}$$

The upshot is that $C_i^{cell}(\mathbb{A}\mathcal{Z}_K) = \bigoplus_{\sigma_e \in K, |\sigma_e|=i} [e] \mathrm{K}_{t_e+i}^{\mathrm{MW}}$, and $C_*^{cell}(\mathbb{A}\mathcal{Z}_K)$ is a subcomplex of $C_*^{cell}(\mathbb{A}^m)$, making the boundary morphism straightforward.

The upshot is that $C_i^{cell}(\mathbb{A}\mathcal{Z}_K)=\bigoplus_{\sigma_e\in K,\ |\sigma_e|=i}[e]\mathrm{K}_{t_e+i}^{\mathrm{MW}}$, and $C_*^{cell}(\mathbb{A}\mathcal{Z}_K)$ is a subcomplex of $C_*^{cell}(\mathbb{A}^m)$, making the boundary morphism straightforward. Now for a smooth fan $\Sigma=(K,\lambda:\mathbb{Z}^m\twoheadrightarrow\mathbb{Z}^n)$, consider the morphism $\exp\lambda:\mathbb{G}_m^m\twoheadrightarrow\mathbb{G}_m^n$ induced by λ , and let $G:=\mathrm{Ker}(\exp\lambda)\subset\mathbb{G}_m^m$ be its kernel.

The upshot is that $C_i^{cell}(\mathbb{A}\mathcal{Z}_K)=\bigoplus_{\sigma_e\in K,\ |\sigma_e|=i}[e]\mathrm{K}_{t_e+i}^{\mathrm{MW}}$, and $C_*^{cell}(\mathbb{A}\mathcal{Z}_K)$ is a subcomplex of $C_*^{cell}(\mathbb{A}^m)$, making the boundary morphism straightforward. Now for a smooth fan $\Sigma=(K,\lambda:\mathbb{Z}^m\twoheadrightarrow\mathbb{Z}^n)$, consider the morphism $\exp\lambda:\mathbb{G}_m^m\twoheadrightarrow\mathbb{G}_m^n$ induced by λ , and let $G:=\mathrm{Ker}(\exp\lambda)\subset\mathbb{G}_m^m$ be its kernel.

Homogeneous Coordinate

G acts freely on $\mathbb{A}\mathcal{Z}_{K}$, and we have

$$G \cap \mathbb{A}\mathcal{Z}_{K} \longrightarrow \mathbb{A}^{m}$$

$$\downarrow^{p}$$

$$X_{\Sigma} \cong \mathbb{A}\mathcal{Z}_{K}/G$$

The upshot is that $C_i^{cell}(\mathbb{A}\mathcal{Z}_K)=\bigoplus_{\sigma_e\in K,\ |\sigma_e|=i}[e]\mathrm{K}_{t_e+i}^{\mathrm{MW}}$, and $C_*^{cell}(\mathbb{A}\mathcal{Z}_K)$ is a subcomplex of $C_*^{cell}(\mathbb{A}^m)$, making the boundary morphism straightforward. Now for a smooth fan $\Sigma=(K,\lambda:\mathbb{Z}^m\to\mathbb{Z}^n)$, consider the morphism $\exp\lambda:\mathbb{G}_m^m\to\mathbb{G}_m^n$ induced by λ , and let $G:=\mathrm{Ker}(\exp\lambda)\subset\mathbb{G}_m^m$ be its kernel.

Homogeneous Coordinate

G acts freely on $\mathbb{A}\mathcal{Z}_K$, and we have

$$G \cap \mathbb{A}\mathcal{Z}_{K} \longrightarrow \mathbb{A}^{m}$$

$$\downarrow^{p}$$

$$X_{\Sigma} \cong \mathbb{A}\mathcal{Z}_{K}/G$$

This induced a morphism of complexes

$$p_*: \quad C^{cell}_*(\mathbb{A}\mathcal{Z}_K) o C^{cell}_*(X_\Sigma) \ [e] \mapsto [p(e)]$$

such that for any group section $g: \mathbb{G}_m^{t_e} \to G$, $p_*[e] = p_*g_*[e]$.

Toric Action on Cubical Cells

The toric group \mathbb{G}_m^n naturally acts on the affine space \mathbb{A}^n . To understand its action on a cubical cell $e: \mathbb{G}_m^{t_e} \to \mathbb{A}^n$, consider a group section $g: \mathbb{G}_m^{t_e} \to \mathbb{G}_m^n$. The image $g_*[e]$ corresponds to the cell $g \cdot e: \mathbb{G}_m^{t_e} \to \mathbb{A}^n$, which may not be a cubical cell.

Toric Action on Cubical Cells

The toric group \mathbb{G}_m^n naturally acts on the affine space \mathbb{A}^n . To understand its action on a cubical cell $e: \mathbb{G}_m^{t_e} \to \mathbb{A}^n$, consider a group section $g: \mathbb{G}_m^{t_e} \to \mathbb{G}_m^n$. The image $g_*[e]$ corresponds to the cell $g \cdot e: \mathbb{G}_m^{t_e} \to \mathbb{A}^n$, which may not be a cubical cell.

To represent $g_*[e]$ in terms of cubical cells, notice that g can be represented by a $t_e \times n$ matrix over \mathbb{Z} as $\{r_{ij}\}$, and defining $r'_{ij} = r_{ij} + \delta_{ij}$. Additionally, let $\chi(i) = 0$ for even i and 1 for odd i.

Toric Action on Cubical Cells

The toric group \mathbb{G}_m^n naturally acts on the affine space \mathbb{A}^n . To understand its action on a cubical cell $e: \mathbb{G}_m^{t_e} \to \mathbb{A}^n$, consider a group section $g: \mathbb{G}_m^{t_e} \to \mathbb{G}_m^n$. The image $g_*[e]$ corresponds to the cell $g \cdot e: \mathbb{G}_m^{t_e} \to \mathbb{A}^n$, which may not be a cubical cell.

To represent $g_*[e]$ in terms of cubical cells, notice that g can be represented by a $t_e \times n$ matrix over \mathbb{Z} as $\{r_{ij}\}$, and defining $r'_{ij} = r_{ij} + \delta_{ij}$. Additionally, let $\chi(i) = 0$ for even i and 1 for odd i.

Proposition

Let $\omega_0 \subset \tau_e = \tau_e^1 \sqcup \tau_e^{\odot}$ be the subset such that $j \in \omega_0$ if $\forall i \in \tau_e^{\odot}, r'_{ij} = 0$. If $t_e > |\tau_e| - |\omega_0|$, then:

$$g_*[e] = \sum_{\omega \subset \tau_e \setminus \omega_0} \eta^{t_e - |\omega|} \sum_{\pi \subset \omega} (-1)^{|\omega| - |\pi|} \prod_{i \in \tau_e^{\odot}} \chi \left(\sum_{j \in \pi \sqcup \sigma_e} r'_{ij} \right) [e_{\omega}]$$

Here we have the morphism $\eta: K_i^{MW} \to K_{i-1}^{MW}$ which is analogous of multiplying by 2. And $[e_\omega]$ represents the cubical cell where $\tau^\odot = \omega$.

Canonical Cells

To further simplify the computation, we introduce a complex $C^{can}_*(\mathbb{A}\mathcal{Z}_K)$ consisting of canonical cells.

Canonical Cells

To further simplify the computation, we introduce a complex $C_*^{can}(\mathbb{A}\mathcal{Z}_K)$ consisting of canonical cells.

Canonical Cells

There exists a subgroup $C_i^{can}(\mathbb{A}\mathcal{Z}_K) \subset C_i^{cell}(\mathbb{A}\mathcal{Z}_K)$ such that it defines a section of p_* at each degree

$$C_i^{can}(\mathbb{A}\mathcal{Z}_K) \subset C_i^{cell}(\mathbb{A}\mathcal{Z}_K)$$

$$\qquad \qquad \downarrow^{p_*}$$

$$\qquad \qquad C_i^{cell}(X_{\Sigma})$$

And for any cubical $[e] \in C_i^{cell}(\mathbb{A}\mathcal{Z}_K)$, there exists a unique group section $T_e : \mathbb{G}_m^{t_e} \to G$, such that $T_*[e] := T_{e*}[e] \in C_i^{can}(\mathbb{A}\mathcal{Z}_K)$.

Canonical Cells

To further simplify the computation, we introduce a complex $C^{can}_*(\mathbb{A}\mathcal{Z}_K)$ consisting of canonical cells.

Canonical Cells

There exists a subgroup $C_i^{can}(\mathbb{A}\mathcal{Z}_K) \subset C_i^{cell}(\mathbb{A}\mathcal{Z}_K)$ such that it defines a section of p_* at each degree

$$C_i^{can}(\mathbb{A}\mathcal{Z}_K) \subset C_i^{cell}(\mathbb{A}\mathcal{Z}_K)$$
 $\downarrow p_*$
 $C_i^{cell}(X_{\Sigma})$

And for any cubical $[e] \in C_i^{cell}(\mathbb{A}\mathcal{Z}_K)$, there exists a unique group section $T_e: \mathbb{G}_m^{t_e} \to G$, such that $T_*[e] := T_{e*}[e] \in C_i^{can}(\mathbb{A}\mathcal{Z}_K)$. The compatible boundary morphism can then be defined as:

$$\partial^{can}[e] = \sum_{j \in \sigma_e} \pm \epsilon^? T_*([\partial_j e]).$$

And p_* induces an isomorphism of complexes $p_*: C_*^{can}(\mathbb{A}\mathcal{Z}_K) \stackrel{\cong}{\to} C_*^{cell}(X_{\Sigma})$.

We can further simplify $C^{can}_*(\mathbb{A}\mathcal{Z}_K)$ by considering the restriction complex $\overline{C}^{can}_*(\mathbb{A}\mathcal{Z}_K) \subset C^{can}_*(\mathbb{A}\mathcal{Z}_K)$, which acts as a retraction, leading to an isomorphism $\overline{C}^{can}_*(\mathbb{A}\mathcal{Z}_K) \cong C^{can}_*(\mathbb{A}\mathcal{Z}_K)$.

We can further simplify $C^{can}_*(\mathbb{A}\mathcal{Z}_K)$ by considering the restriction complex $\overline{C}^{can}_*(\mathbb{A}\mathcal{Z}_K) \subset C^{can}_*(\mathbb{A}\mathcal{Z}_K)$, which acts as a retraction, leading to an isomorphism $\overline{C}^{can}_*(\mathbb{A}\mathcal{Z}_K) \cong C^{can}_*(\mathbb{A}\mathcal{Z}_K)$.

Let's consider the sheallable cases. A simplicial complex K is shellable if it admits a shelling, i.e. an ordering $\{\sigma_2, \ldots, \sigma_s\} = K(n)$ of its facets such that they have nice intersections.

We can further simplify $C^{can}_*(\mathbb{A}\mathcal{Z}_K)$ by considering the restriction complex $\overline{C}^{can}_*(\mathbb{A}\mathcal{Z}_K) \subset C^{can}_*(\mathbb{A}\mathcal{Z}_K)$, which acts as a retraction, leading to an isomorphism $\overline{C}^{can}_*(\mathbb{A}\mathcal{Z}_K) \cong C^{can}_*(\mathbb{A}\mathcal{Z}_K)$.

Let's consider the sheallable cases. A simplicial complex K is shellable if it admits a shelling, i.e. an ordering $\{\sigma_2, \ldots, \sigma_s\} = K(n)$ of its facets such that they have nice intersections.

The shellable simplicial complex have the important property that for $\sigma_i \in K(n)$, here exists a unique subset $r(\sigma_i) \subset \sigma_i$ that is minimal among all subsets $\tau \subseteq \sigma_i$, where $\tau \nsubseteq \sigma_j$ for all j < i.

We can further simplify $C^{can}_*(\mathbb{A}\mathcal{Z}_K)$ by considering the restriction complex $\overline{C}^{can}_*(\mathbb{A}\mathcal{Z}_K) \subset C^{can}_*(\mathbb{A}\mathcal{Z}_K)$, which acts as a retraction, leading to an isomorphism $\overline{C}^{can}_*(\mathbb{A}\mathcal{Z}_K) \cong C^{can}_*(\mathbb{A}\mathcal{Z}_K)$.

Let's consider the sheallable cases. A simplicial complex K is shellable if it admits a shelling, i.e. an ordering $\{\sigma_2, \ldots, \sigma_s\} = K(n)$ of its facets such that they have nice intersections.

The shellable simplicial complex have the important property that for $\sigma_i \in K(n)$, here exists a unique subset $r(\sigma_i) \subset \sigma_i$ that is minimal among all subsets $\tau \subseteq \sigma_i$, where $\tau \not\subseteq \sigma_j$ for all j < i.

For a shellable fan $\Sigma = (K, \lambda)$, we have the restriction complex $\overline{C}_*^{can}(\mathbb{A}\mathcal{Z}_K)$ where on each degree it only depends on K:

$$\overline{C}_{i}^{can}(\mathbb{A}\mathcal{Z}_{K}) = \bigoplus_{\sigma \in K(n), \ |r(\sigma)|=i} [e_{\emptyset}^{r(\sigma)}] \mathbf{K}_{i}^{\mathrm{MW}}$$

and $[e_{\emptyset}^{r(\sigma)}]$ means $\sigma_e = r(\sigma)$ and $\tau_e^{\odot} = \emptyset$.

For a shellable fan $\Sigma = (K, \lambda)$, we have the restriction complex $\overline{C}_*^{can}(\mathbb{A}\mathcal{Z}_K)$ where on each degree it only depends on K:

$$\overline{C}_{i}^{can}(\mathbb{A}\mathcal{Z}_{K}) = \bigoplus_{\sigma \in K(n), \ |r(\sigma)|=i} [e_{\emptyset}^{r(\sigma)}] \mathbf{K}_{i}^{\mathrm{MW}}$$

and $[e_{\emptyset}^{r(\sigma)}]$ means $\sigma_e = r(\sigma)$ and $\tau_e^{\odot} = \emptyset$.

While boundary morphism $\overline{\partial}^{can}$ also relies on λ .

Proposition

$$\overline{\partial}^{can}[e_{\emptyset}^{r(\sigma)}] = \sum_{j \in r(\sigma)} \pm w_j \eta[e_{\emptyset}^{r(\sigma) \setminus j}]$$

where $w_i = 0$ or 1 depends on the fan $\Sigma = (K, \lambda)$.

We can in fact explicitly calculus the homology using some combinatorial ways.

Low Dimensional Cases

Given that K is the boundary complex of a simple n-polytope (e.g., when X_{Σ} is projective), we can show that for dimension $n \leq 4$, the torsion part of $\mathbf{H}_i^{cell}(X_{\Sigma})$ consist only of η -torsion elements.

Recall that $K_i^{MW}/\eta \cong K_i^M$ and $\eta K_i^{MW} \cong 2K_i^M$. Let $b_i = \mathrm{rk}(G_{i,free}^{\lambda})$ be some Betti numbers can be computed from the fan Σ , and X_{Σ}^n denotes the toric variety of dimension n.

Low Dimensional Cases

Given that K is the boundary complex of a simple n-polytope (e.g., when X_{Σ} is projective), we can show that for dimension $n \leq 4$, the torsion part of $\mathbf{H}_{i}^{cell}(X_{\Sigma})$ consist only of η -torsion elements.

Recall that $K_i^{MW}/\eta \cong K_i^M$ and ${}_{\eta}K_i^{MW} \cong 2K_i^M$. Let $b_i = \mathrm{rk}(\mathcal{G}_{i,free}^{\lambda})$ be some Betti numbers can be computed from the fan Σ , and X_{Σ}^n denotes the toric variety of dimension n. Speifically, we have the following results for various dimensions:

$\mathbf{H}_{i}^{cell}(X_{\Sigma}^{2})$	Orientable	Non-orientable
i = 0	\mathbb{Z}	$\mathbb Z$
i = 1	$({ m K}_1^{ m MW})^{m-2}$	$(\mathrm{K}_1^{\mathrm{MW}})^{m-3} \oplus \mathrm{K}_2^{\mathrm{M}}$
i = 2	$ m K_2^{MW}$	$2\mathrm{K}_2^\mathrm{M}$

$\mathbf{H}_{i}^{cell}(X_{\Sigma}^{3})$	Orientable	Non-orientable
i = 0	$\mathbb Z$	${\mathbb Z}$
i = 1	$(\mathrm{K}_1^{\mathrm{MW}})^{b_0} \oplus (\mathrm{K}_1^{\mathrm{M}})^{m-3-b_0}$	$(\mathrm{K}_1^{\mathrm{MW}})^{b_0} \oplus (\mathrm{K}_1^{\mathrm{M}})^{m-3-b_0}$
i=2	$({ m K}_2^{ m MW})^{b_0} \oplus (2{ m K}_2^{ m M})^{m-3-b_0}$	$\left[(\mathrm{K}_2^{\mathrm{MW}})^{b_0-1} \oplus \mathrm{K}_2^{\mathrm{M}} \oplus (2\mathrm{K}_2^{\mathrm{M}})^{m-3-b_0} \ ight]$
i = 3	$ m K_3^{MW}$	$2 ext{K}_3^ ext{M}$

$\mathbf{H}_{i}^{cell}(X_{\Sigma}^{4})$	Orientable	
i = 0	\mathbb{Z}	
i = 1	$(\mathrm{K}_1^{\mathrm{MW}})^{b_0} \oplus (\mathrm{K}_1^{\mathrm{M}})^{m-4-b_0}$	
i = 2	$(\mathrm{K}_{2}^{\mathrm{MW}})^{b_{1}} \oplus (\mathrm{K}_{2}^{\mathrm{M}})^{m-4-b_{0}} \oplus (2\mathrm{K}_{2}^{\mathrm{M}})^{m-4-b_{0}}$	
i = 3	$({ m K}_3^{ m MW})^{b_0} \oplus (2{ m K}_3^{ m M})^{m-4-b_0}$	
i = 4	$ m K_4^{MW}$	
$\mathbf{H}_{i}^{cell}(X_{\Sigma}^{4})$	Non-orientable	
i = 0	\mathbb{Z}	
i = 1	$(\mathrm{K}_1^{\mathrm{MW}})^{b_0} \oplus (\mathrm{K}_1^{\mathrm{M}})^{m-4-b_0}$	
i = 2	$(\mathrm{K}_{2}^{\mathrm{MW}})^{b_{1}} \oplus (\mathrm{K}_{2}^{\mathrm{M}})^{m-5-b_{2}} \oplus (2\mathrm{K}_{2}^{\mathrm{M}})^{m-4-b_{0}}$	
i = 3	$(\mathrm{K}_{3}^{\mathrm{MW}})^{b_{2}} \oplus \mathrm{K}_{3}^{\mathrm{M}} \oplus (2\mathrm{K}_{3}^{\mathrm{M}})^{m-5-b_{2}}$	
i = 4	$2\mathrm{K}_{4}^{\mathrm{M}}$	

We can observe the Poincare duality for complex point $X_{\Sigma}(\mathbb{C})$ by replacing K^{MW} and K^{M} with $\mathbb{Z}[1]$, and for real points $X_{\Sigma}(\mathbb{R})$ by removing K^{M} and replacing K^{MW} with \mathbb{Z} .

Motivic Decomposition

Corollary

In the category $\widetilde{\mathrm{DM}}(k)$, for a smooth pure shellable toric variety X_{Σ} , we have the following MW-motivic decomposition:

$$\widetilde{\mathrm{M}}(X_{\Sigma}) \cong \bigoplus_{I \in \mathbb{N}} \bigoplus_{\sigma \in \mathcal{B}(I)} \widetilde{\mathbb{Z}} /\!\!/ l\eta(|r(\sigma)|)[2|r(\sigma)|],$$

where $B(I) \subset K(n)$ are subsets that can be derived from the fan $\Sigma = (K, \lambda)$.

Motivic Decomposition

Corollary

In the category $\mathrm{DM}(k)$, for a smooth pure shellable toric variety X_{Σ} , we have the following MW-motivic decomposition:

$$\widetilde{\mathrm{M}}(X_{\Sigma}) \cong \bigoplus_{I \in \mathbb{N}} \bigoplus_{\sigma \in \mathcal{B}(I)} \widetilde{\mathbb{Z}} /\!\!/ l\eta(|r(\sigma)|)[2|r(\sigma)|],$$

where $B(I) \subset K(n)$ are subsets that can be derived from the fan $\Sigma = (K, \lambda)$.

If we pass to the derived motivic category $\mathrm{DM}(k)$, in which $\eta=0$, then we obtain this trivial corollary (as an analogue of $\mathbb{Z}/2$ coefficient):

Corollary

In the category $\mathrm{DM}(k)$, for a smooth pure shellable toric variety X_{Σ} , we obtain the following motivic decomposition:

$$\mathrm{M}(X_{\Sigma}) \cong \bigoplus_{\sigma \in K(n)} \mathbb{Z}(|r(\sigma)|)[2|r(\sigma)|]$$

More General Cases

Our results do not hold exactly when the pure or shellable conditions are removed. The problem arises from the non-algebro-geometric components (i.e., the summands $\mathbb{Z}(q)[p]$ with 2q > p) it has. However, these components vanish when considering only the Chow group, providing an additive basis for the Chow group.

More General Cases

Our results do not hold exactly when the pure or shellable conditions are removed. The problem arises from the non-algebro-geometric components (i.e., the summands $\mathbb{Z}(q)[p]$ with 2q > p) it has. However, these components vanish when considering only the Chow group, providing an additive basis for the Chow group.

Proposition

For a smooth toric variety X_{Σ} , consider an order on $K(n) = \{\sigma_1, \dots, \sigma_g\}$. Define the sets

$$\min(\sigma_i) = \{ \tau \subset \sigma_i \mid \tau \text{ is minimal for } \tau \not\subset \sigma_j \text{ for all } j < i \}.$$

We then have the following decomposition of the Chow group:

$$\operatorname{CH}^*(X_{\Sigma}) \cong igoplus_{\sigma \in K_{\mathsf{max}}} igoplus_{ au \in \mathsf{min}(\sigma)} \mathbb{Z}[e^{ au}]$$

The generators are given by $[e^{\tau}] \in \mathrm{CH}^{|\tau|}(X_{\Sigma})$.

Thank you

Questions

What is B(I)?

Given a mod-2 linear function $\kappa:\mathbb{Z}^n\to\mathbb{Z}_2^n\to\mathbb{Z}_2$, we define the row set $\omega_\kappa\subset \llbracket m\rrbracket$ as the subset $\{j\in\llbracket m\rrbracket\mid |\kappa\lambda(v_j)\equiv 1\mod 2\}$, where v_j are the basis vectors of \mathbb{Z}^m . Let $\mathrm{row}\lambda\subset\mathbb{Z}^{\llbracket m\rrbracket}$ denote the set of all row sets; thus, we can observe that $|\mathrm{row}\lambda|=2^n$.

For $\lambda:\mathbb{Z}^m\to\mathbb{Z}^n$, let K_ω represent a specific subcomplex of K formed by intersecting with $\omega\in\operatorname{row}\lambda$. We define $G_i^\lambda=\bigoplus_{\omega\in\operatorname{row}\lambda}\widetilde{H}_i(|K_\omega|)$ as the direct sum of the reduced homology groups. The basis $B(0)\subset K_{\max}$ forms the free part of $G_{*,free}^\lambda$, while for I>1, the basis $B(I)\subset K_{\max}$ corresponds to the I-torsion part $G_{*,I-tor}^\lambda$.